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H3C 357, Canada

Received 14 Jupe 1993

Abstract. A variable-coefficient nonlinear Schridinger (VCNLS) equation, involving three
arbitrary complex functions of space-time {in I + 1 dimensions) is analysed from the point of
view of its symmetries. All equations of the type studied having non-trivial Lie point symmetry
groups G are identified. The symmetry group is shown lo be at most five-dimensional and
only when the equation is equivalent to the NLS equation itseif or to a rather special complex
Ginzburg-Landau equation. Lie point transformations are used to obtain solutions of specific
VCNLS equations that should be of interest in nonlinear optics or other branches of physics.

1. Introduction

The present article is devoted to a study of variable-coefficient nonlinear Schrddinger
(VCNL.S) equations

iy + Flx, e + g . u|uf* +h(x, ) u=0
F=fi+if ~g=mt+ip  h=h+ik (L1
g heR j=1.12 fi#0 g #0.

We shall classi'fy such equations into equivalence classes under the transformations

u(x,t) = U, §,5(%,0) F=X(x,0 f=T(x, 1)
8%/8% 3%/or (1.2)
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Each equivalence class will be characterized by its Lie point symmetry group G. We
shall see that the symmetry group is at most five-dimensional. The existence of non-trivial
symmetry groups of course imposes strong restrictions on the complex functions f;, g; and
k; in (1.1). The symmetries will then be used to'obtain physically interesting solutions with
a quite non-trivial space-time dependence.

We shall call transformations of the form (1.2), leaving the form of the VCNLS equation
invariant, but possibly changing the functions f, g and A into different ones (‘allowed
transformations”). The classification method used here has recently been applied to the
study of the variable-coefficient Korteweg—de Vries equation in a similar manner [1,2].

The maotivation for the present study lies in the physical importance of the VCNLS
equation. Equation (1.1) is a natural extension of two fundamental equations. One is the
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nonlinear Schrédinger (NLS) equation itself, obtained from (L.1), for fi=1, g1 = %1 and
J2 = g2 = hy = hy = 0. The complex function u(x, ¢} has different physical meanings in
different branches of physics. It may be an electromagnetic potential and the NLS equation
then describes, for instance, the evolution of nonlinear Langmuir waves in a plasma [3]. In
other applications, #(x, t) may be a wave amplitude, and the NLS equation describes weakly
noniinear, weakly dispersive waves in fibre optics [4] or deep water [5]. Independent of its
physical interest, the NLS equation is a prototype soliton equation, having all the attributes
of an infinite-dimensional completely integrable Hamiltonian system [6-8]. Large families
of solutions of the NLS equation are obtained by essentially linear techniques (the inverse
scattering transform and its generalizations). Such solutions include solitons, multisclitons,
breathers and quasiperiodic solutions.

Equation (1.1} also generalizes another fundamental equation, the complex Ginzburg—
Landau (CGL} equation, obtained when f, g and # are constant (the real Ginzburg-Landau
equation is obtained when they are purely imaginary). In this case u(x,7} can be a
complex order parameter, describing various physical phenomena close to critical stability.
In hydrodynamics, for instance, it results from an expansion in some parameter (e.g. the
Reynolds, Rayleigh or Taylor number) near the critical value of that parameter. For example,
it is the generic amplitude equation that governs the initial stages of phase transition in
plane Poiseunille flow [9] (fluid ﬂo“'rin_g between two parallel plates), Taylor—Couette flow
[10] (fluid flowing between two rotating cylinders) as well as Rayleigh-Bénard convection
[11] (fluid with a vertical temperature gradient). Similarly to fluid systems, the CGL
equation is also found to govern the appearance of chemical turbulence in reaction-diffusion
systems [12].

In addition to critical phenomena, the CGL equation also has numerous applications in the
modeliing of the electric field amplitude in nonlinear optics. For instance, it describes, under
appropriate conditions, the dynamics of light in laser cavities [13—17] and semiconductors
[18]. Recently, it has also been used to model the dynamics of a spatial solitary wave in
a saturated amplifying/absorbing medium [19] and the dynamics of pulse propagation in
nonlinear rare-earth doped optical fibres for which material dispersion, gain dispersion and
nenlinearity all contribute significantly [20-26].

Because of its wide range of applications, properties of the CGL equation are continuously
the subject of studies both in physical and mathematical contexts. Among the properties
already known, let us mention the following ones. The Hirota method [27] has been used
to rewrite the CGL equation in a bilinear form in order to obtain exact solutions describing
solitary waves and shock fronts [28]. Numerical integrations of the CGL equation were
also performed and led to the determination of coherent structures with complex field
profiles [29]. A stability criterion was obtazined which determines whether the system
underlying the CGL equation does or does not evolve into 2 monochromatic state [30].
In relation to this criterion, the bifurcation structure and asymptotic dynamics of unstable
periodic modulations of a uniform wave-train were also studied {31-37). In particular,
asympiotic states such as limit cycles, 2-torus and chaotic attractors were shown to exist,
Many investigations of periodic solutions have been performed [38-40Q]. Finally, as far as
we kitow, only one study was concerned with the question of symmetry properties of the
CGL equation [41].

Allowing the parameters f, g and / to be complex functions of the independent variables
x and f may correspond to new or more realistic physical conditions. In hydrodynamics,
for instance, variable depth, and the presence of vorticity or viscosity are a few examples
of physical effects that introduce such variable coefficients in the Kdav equation [42]. In
nonlinear optics, non-homogeneous dielectric media usually lead to variable coefficients
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in the NLS or CGL equation. Propagation-coordinate-dependent amplification or transverse-
coordinate-dependent diffraction and nonlinearity may also be modelled in this way.

The generalization of the NLS to the VCNLS equation usually destroys some or all of
the integrability properties of the original equation. There exist, however, particular cases
when this is not so [43].

Finally, we mention that other generalizations of the NLS equation have been studied
in the literature. Usually they involve constant coefficients, but generalize the type of
nonlinearity [44-50]. '

The aim of the present study is two-fold. First, in sections 2 and 3, we will classify
the VCNLS equations of the form (1.1) according to the dimension and type of their point-
symmetry groups, Le. the set of Lie point transformations of type (1.2) that preserve the form
of the equation and transform solutions amongst each other. The classification method is
based on the usual infinitesimal techniques for finding point symmetry groups of differential
equations [50,51] and will be described in section 3. The representative equation in each
class will be determined by an extensive use of the concept of ‘allowed transformations’,
which will be presented in section 2. These transformations are those that relate equations
of the form (1.1} to other equations of the same form, but possibly with different arbitrary
functions f, g and f. Lie point symmeitry transformations are particular cases of allowed
transformations when the form of the functions f, g and # is preserved. Two equations
related by an allowed transformation will be considered to belong to the same equivalence
class. As a result, the symmetry group of the VCNLS equation will be shown to be at
most five-dimensional, which occurs only if the function f can be transformed into a real
constant, g to a complex constant and 4 to 0.

Second, in section 4, we will concentrate on the analysis of a physically important
subset of allowed transformations, i.e. those that relate the VCNLS equation to the CGL and
NLS equations. In particular, our analysis will permit the identification of the form of the
VCNLS eqguation that possesses the same symmetry and integrability properties as the NLS
equation.

2. Allowed transformations

2.4, General form of the transformations

Let us now determine the Lie point transformations that leave the VCNLS equation (1.1)
form invariant. Such transformations, by definition, do not add any terms to the considered
equation, but may change the functions that are already there. We restrict ourselves to
fibre-preserving transformations, i.e. we assume.that they have the form of (1.2). In other
words, the new independent variables 7 and £ do not depend on u.

We calculate #, and u,, and substitute into (1.1). Requiring that the equation for &(%, 7)
be linear in #zz and &7 and that no terms of the type &y occur, we find

Uz =0 H=0. - 2.1
Requiting that the nonlinearity be cubic (no quadratic terms in u present), and that terms

proportional to ii; cancel, as well as terms not involving the dependent function at all, we
obtain the allowed transformations

u(x, ) = Qx, HaE,H  F=X01t I=T@. 2.2)
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We can view T(¢) and X (x, #) as arbitrary real sufficiently smooth functions, The function
Q(x,t) is complex and must satisfy

QX+ f(x0) e @+20:X2)=0. (2.3)
The transformed functions in the VCNLS equation are
_— x2 e [
f&5= f’(x,t)—T-ﬁ - EE D =g
(2.4

o {
h(f,t}=ﬁ{k9+iQf+fox}

where x and ¢ must be expressed in terms of ¥ and f from (2.2) (the dot stands for a time
derivative).
22. Simplification of the equation and restrictions on allowed transformations

Since we shall always assume fi(x,t) # 0 in some open interval of R we can set
X% = &7 f!. This amounts to putting

fO, 0 =14ifkx,0 feR (2.5)
in (1.1).
In order to keep this normalization intact, we must limit the allowed transformations to

u(x,t) = Q(x, ) &%, i=T@) F=TOx+50

(2.6)
QeC T.tecR =0
with
ig[(ﬁ)’x+g‘]+zc1+;fz)Q;ﬁ=o. @7
We introduce the moduli and phases of u and O, putting
u(x, 1) = p(x, ) @™ O(x, 1) = R{x, t) ¥t
. (2.8)
P20 R>0 0 w<2r 0< ¢ <2r.
Equation (2.7) then implies
Re 5 (JT)x+8 29
R~ 20+ JF '
-\/"' . -
by = 1_(T)x+é (2.10)

20+ JT

These allowed transformations change the functions f(x,?), g(x,t) and h(x,t) in the
VCNLS equation as follows:

. 2

I e @-11)
.1 R —R®? 2Ry ¢s+ Robu

BED =g - g Deo Rl p2RGARS

_ pa2
+i[kz(x,t)+%+fz B — 20 +2R*¢‘;R¢‘*]}. 2.116)
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2.3. Transformations of vector fields

We shall see in section 3 that the Lie algebra of the symmetry group of (1.1) is realized by
differential operators of the form

X=1()8+[3ix+a@®] + A 1) 08+ D(x,1) % (212

where the real functions (r), a(f), A(x,t) and D{x, t) are subject to further determining
equations. Under the allowed transformations (2.6) the vector field X transforms into a
vector field of the same form. If we have 7(f) % 0 in (2.12), we can put T = £z~ and
e = —av/Tr~! to obtain

Xy=8+A0, ) p8+ D, 1) dn (2.13)

(A and D are not the same as in (2.12)).

Moreover the form of X, in (2.13) is not changed by allowed transformations (2.6}
with T = 1, § = 0 and R = R(s), ¢ = ¢(¢). Such transformations will amount to the
substitution :

Alx, 1) —» A(x, 1) — _I_?g)_ Dx,t) = D({x, 1) — qfv(t) (2.14)

in (2.13).
For v =0, @ # 0 in (2.12), we can transform the vector field into

Xo=08+Ax, 1) p8,+ D(x,1) 00 . (2.15)
Further allowed transformations with T = 1 change the functions A and D in (2.15) into

f2é D £

A A . =
AT D by

t— x—=>x+5@. (2.16)

3. The symmetry group

3.1. Thé determining equations

The Lie algebra L of the symmetry group of (1.1) will be realized by vector fields
X=m0+md+¢10,+¢20s G.1

where 51, 12, ¢ and ¢, are functions of x, ¢, p and w (p and @ are the modulus and phase
of the function u). The algorithm for determining these functions is described, for example,
in [51,52]. 'We use a MATHEMATICA version [53] of the MACSYMA program [54] which
calculates the second prolongation, pr® X, applies it to (1.1) (written as a system of two
real equations), and imposes that the result should vanish on the solution set of (1.1). This
provides a set of 68 determining equations, i.e. linear partial differential equations for the
functions ny, %2, ¢; and ¢;. The code solves the simplest amongst them, uses the result to
simplify the remaining ones and then prints out a system of 21 remaining equations.
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Part of the determining equations can be solved independently of the functions f, g and
h in (1.1). The result is that n;, 12, ¢, and ¢» satisfy

m=n1  mE=nd  di=AEDp  ¢r=Dix, 1) (3.2)

where 1, 1z, A and D are subject to eight remaining determining equations, involving the
functions figuring in (1.1}

Before spelling out these equations we recall that fi(x, ) satisfies f1 % 0. We then
use the allowed transformations to normalize fi(x,f) = 1, as in (2.5). The remaining
determining equations reduce to

m=z(t) m=5tx+al (3.3)
D, =-2—($f22—) (% fx —}-c'z) (3.4a)
A= —~f—2~(zrx+a) (3.4b)
200+ 15
T+ [3tx+ea] =0 (3.5)
T3t xta] e+ QA+ g =0 (3.6)
Tt [3txta] g+ QA+ E =0 (3.7
thi+[ftx+a] hix+ih —Di+ Ay — i D =0 (3.8)
thy, +[Ltx+alho,+thy+ A+ Do+ rAu=0. (3.9)

In the following analysis we always assume
gix, ) #0 (3.10)

i.e. the original nonlinear term in the NLS equation is present. Throughout we shall make
use of the allowed transformations to simplify vector fields and the determining equations.
The justification for this is that we are classifying equations of the form (1.1) according
to their symmetries. The resulting VCNLS equations will represent conjugacy classes with
respect to allowed transformations.

We note that the results of (3.1) and (3.3) are summed up in (2.12).

3.2. One- and two-dimensional symmetry algebras

As noted above, an element X of the symmetry algebra L will have the form (2.12). Using
allowed transformations we can further simplify the considered element X. Three cases
occur.,

(1) z(@®) =0, e@®)=0 _

From (3.6) we obtain A = 0 (since we have g, # () and (3.4a) and (3.8) imply
D = constant. The result is that precisely one symmetry operator of this type exists,
independently of the form of the functions f, g and & in (1.1}, namely W = 4d,. Iis
meaning is obvious: we can always add a constant to the phase ® of any SOlllthIl u(x, ).
Moreover, this is the only pure gauge transformation allowed.
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@O #0 :

We use an allowed transformation to transform X into X; of (2.13), ie. set z(#) = 1,

afz) == 0. From (3.4} we obtain D, = 0, A, = 0 and we use the transformation of (2.14)

to set A(t) =0, D(t) =0. Equations (3.5)«3.9) then imply fo, = g1, = g2 = f1, =

ko =0. B

Brt) =0, a@®)#0
We transform the vector field X into X, of (2. IS), ie. a(t) = 1. From the determining
equations we obtain that X must have the form

X=8:~-3q0)pdh+r(t)d, (3.1D)
and that the functions in (1.1) satisfy
f=1+1/0)
=[n® +in@] & ' (3.12)

=[O x+p®] +i[1 40 x + p)].

For f; # 0 we use the allowed transformations to set g(t) — 0, p1 () — 0 and p2(#) — 0.
For f, =0 we can transforni r(¢) — 0, p1(t}) = O and ps(¢) — 0, but ¢{¢} is an invariant.
The results obtained so far can be summed up as follows.

Theorem 1. The VCNLS equation (1.1) is invariant under gauge transformations & = w-+wp,
generated by ) ‘
8
St W=_— : (3.13)
dew
for any choice of the complex functions f, g and h. The group of pure gauge transformations
(leaving x and ¢ invariant) is not larger for any choice of f, g. A. O

Theorem2. The VCNLS equation (1.1) has a two-dimensional symmetry algebra if and only
if the functions f, g and # and the symmetry algebra can be transformed into one of the
following cases:

S2‘1:P0=3; W=3w

_ (3.14)
F=1+ifx) g=g1x)+iga(x) k= hi(x) +ik2(x)
SaptX=08,+r(t)d, W =23,

: (3.15)
F=1+1f00 g=gt) +igAn) h=FOx. ‘
For £2(t) = 0 we have r(t) = 0.
32,3:X=3x—¥p3ﬂ W=3w
- () (3.16)
F=1 g=[n0O+in0]™  k=illx - gz
All functions in (3.14)-(3.16) are E:al. ) O

We note that all three two-dimensional symmetry algebras S5, 5,2 and 5, 3 are Abelian.
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3.3. Three-dimensional symmetry algebras

A real Lie algebra L of dimension dim L = 3 can be either simple, or solvable. The simple
Lie algebras 5/(2, R) and su(2) cannot be realized in terms of vector fields of the form
(2.12). Hence, any algebra we obtain must be solvable. All solvable Lie algebras with
dim L = 3 have two-dimensional Abelian ideals. We choose a basis {X|, X, X3} with X
and X, in the ideal and write the commutation relations as

(X1, X5) a b\ (X
([Xz,Xﬁ) =(c d) (Xz) [X:i, X32]1=0 3.17)

wherea, b, c,d € R

With no loss of generality we assume that the ideal {X,, X5} is in its standard form,
ile. 831, 522 or 523. We always choose X; = W and hence have @ = b =0 in (3.17}. For
d # 0 we can set, by a change of basis, d = 1, ¢ = 0. For d = 0, we have eithet c = 0
or ¢ = 1. In other words the algebras we obtain can be Abelian (¢ = b =c=d = 0),
nilpotent (a = b =d = 0, ¢ = 1), or solvable and decomposable (a =b=¢=0,d = 1),
The Abelian ideal is unigne only in the solvable non-nilpotent case.
(1) Ideal Sy
We have X; = W, X3 = P and take X3 as in (2.12). The functions f, g and /s are as
in (3.14). We first impose that {X;, X5, X3} forms a Lie algebra, then solve the determining
equations (3.4)-(3.9) for X3.

We obtain four distinct cases, after simplifying by allowed transformations. They are:

SatP=39 Py=38 W=2,

. (3.18)
f=1+if g=¢c+iy h=1ihy
S30:Po=25 X=8+1pdp W =3, 519
f=1 g=(e+ip)e™ h=ihs
S33: Py=2d, X=08+apd,+1td, W=32,

(3.20)
F=1+if g=(e+iy)e h=x+ib

2

S3s: Py=2 Dﬂtar—f-%xx PI W =3,

(3.21)

1
F=1+if g =(e+iy)x? h=(h1+ih2)x—2.

The quantities f>, ¥, Ay, k2, a and p are arbitrary real constants and € = 1. The
algebras S3,1 and 832 are Abelian, S; 3 is nilpotent, S35 is solvable and decomposable. For
the algebra S3; we have f, = 0; for f2 3 0, 532 would be equivalent to 53 ;.

(2) Ideal 574

We take the ideal as in (3.15) and add an element X3 of the form given in (2.12). We
take f, g, and & as in (3.15) and solve the determining equations required for X3 to be
a symmetry operator. We find that in order for {X;, X5, X3} to form a Lie algebra, we
must have 7 = 11f + 1y with 71 and 7y constant. The case 1y £ 0 leads to a new class of
symmetry algebras. The case 7; = 0, 75 52 0 gives an algebra already in the list (53, or
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8$13). The case 7; = 0, 1y = 0 gives a new class of subalgebras. We represent the two
new algebras by

S34:P1=08,  B=td+4x8, W=,
(3.22)
fr=1 g=g@)+ig) h=0.

The function g;(#) 7and ga2(z) are arbitrary. The operator B generates Galilei transformations

2a
S3,6:X=8x~—:-/-t_-3w D=td+5x0:—35p09 W=24,
. (3.23)
. . x i
f=1+1f2 g=€+1g2— h=dr37——t—
where fa, g2, a, b are constants, € ==x1.
(3) Ideal S35
This ideal provides one more class of Lie algebras, represented as follows:
lg 1 1
S$37: X =128, —ETpo D=t8,+§x8x—§pap W=2a,
g (3.24)
. X a
f=1  g=(e+iy)erV h=—4‘33/2+

where 1, ¢, and a are constants, ¢ = £1.
We again sum up the results as a theorem.

Theorem 3. Seven classes of VCCGL equations with three-dimensional symmetry groups
exist. The coefficients in the equations and the Lie algebras themselves are presented in
(3.18)(3.24). The Lie algebras S;; and S;; are Abelian, S35 and S34 are nilpotent,
non-Abelian and S35, 534 and S3 7 are solvable and decomposable.

34. Four-dimensional symmetry algebras

(1) Non-solvable Lie algebras
For dim L = 4 we can have a symmetry algebra of the form s/(2, R) & A;. By allowed
transformations we can take the symmetry algebra and coefficients in the equation to

San:Po=2d D=2t8+x3—1pd, C=1"3+xt0:—1tp8, +1x%9,

1 : 1 (3.25)
W=a, f=1 "~ g=(+iy)- h=(h +iks)—
X X

where y, k) and k3 are constants, € = £1.

(2) Nilpotent Lie algebras
A nilpotent symmetry algebra will have a three-dimensmnal Abelian ideal. It can be
transformed to the form

Sea:Po=d,  Pi=0, B=td+1lxd, W=a,
, (3.26)
f=1 g=¢c+igm h=ihy
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where € = +1, g, and ki, are constants, #; # 0.

(3) Solvable non-nilpotent Lie algebras

We shall just present the results here. To obtain them we first take the nilradical (maximal
nilpotent ideal) into its standard form. This is either Abelian as in S3,; or 832, or nilpotent,
as in S33 or S34. The algebra is then extended by adding a further element. This in
turn imposes restrictions on the coefficients in the equation. The following inequivalent
symmetry algebras are obiained:

S23: P =25 P =38, W=2a, D=1t3+3x8,—%1pd,
(3.27)
f=1+ipf g=c4ig h=0

where € = X1, f; and g, are constants, f; = 0. The algebra is decomposable as
Ssz=1{D, Po, PI}OW Ssa: P =8 B=18+3x38, W =34,

b (3.28)
D=1t3+ix3-1p3, f=1 g=e+iy k=iTz

where ¢ = %1, ¥ and ks # 0 are constanis, and
Sas:Pr=20 B=10+3x8, W=32

C=4+1)8 +1x8,—pd + 1x%3, (3.29)

. 12hy -t
=1 = =
f g=¢e+iy h 31D

where € = %1, y, k2 are constants.

The algebras S, 4 and S4 5 are indecomposable. They are not mutually isomorphic, since
D acts on P, and B like a Lorentz transformation, C like a rotation.

We can now sum up the results as a theorem.

Theorem 4. Five conjugacy classes of VONLS equations with four-dimensional symmetry
groups exist. The coefficients in the equation and the corresponding symmetry algebras are
summed up in (3.25)(3.29). The algebra 84, has the structure of gf(2, R), S84 is nilpotent,
54,3 is solvable and decomposable, S; 4 and S; 5 are solvable and indecomposable.

3.5, Five-dimensional symmetry algebras

The result In this case is very simple and we shall just present it without proof.

Theorem 5. Any VCNLS equation with a five-dimensional symmetry group can be
transformed into the VCNLS equation satisfying

f=1 g=c+igm h=0. (3.30a)
The symmetry algebra is solvable and has the form

Po=10 P =2, W=08  B=t3+3x8, D=t13+3x3—35pd,
(3.30b)

which is isomorphic to the one-dimensional extended Galilei similitude algebra [47].
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4. Solutions of VCNLS equations

As we have seen above, the concept of allowed transformations was very useful in the
classification process leading to the representative equations given in section 3. In a
complementary approach, allowed transformations can be used to obtain solutions of rather
general VCNLS equations in terms of solutions of a simpler representative equation that
exhibits the same symmetry properties. In the present section, we briefly consider such
solutions for VCNLS equations with f; = constant, related by allowed transformations to the
complex Ginzburg-Landau equation, i.e. (1.1) with f, g and 4 constant.

By reformulating the results of section 2, one can show that the most general VCNLS
equations that can be transformed into one of the representative equations of section 3, with
f> = constant, are those for which f> = /> and

g =@ +ig) T I 2e 2 ka4l ’ 4.1
Ry =K +4(+ fH K+ L +40+ DHKLIx+ T+ + H L2+ T (42)
hy = ~fIK + 401+ A K2 — L +40 + FHKL]x

— I =201+ K = (1 + DL+ b, T ' (4.3)

where “stands for ihe coefficients of the chosen representative equation and 7, J, X, L and
T are functions of ¢ alone.
The transformation itself turns out to be

f=T  with 7T =The¥Hhika (4.4a)
F=vVTx+e with E=-200+fAVTL " (4.4B)
U = f(F, ) [ el K3 +Lx) GRS HLat]) (4.4¢)

where Tj is a positive constant, It is important to note that the transformation (4.4) involves
four arbitrary functions of ¢, namely I, J, K and L. This provides enough freedom to build
up VCNLS equations that may correspond to a particular physical situation.

It is not our present intention to analyse the effect of the transformation (4.4) on all the
representative equations with f, = constant, since exact solutions are difficult to obtain for
most of them. We shall keep to a few illustrative examples for the physically important
CGL equation for which many exact solutions are known. For f; # 0, the functions X and
L are fixed by the coefficients of x? and x in g respectively. For f, = 0, they are fixed
by the coefficients of x? and x in 4. Fixing the coefficient of x% in h; leads to a Riccati
equation for K that can be solved exactly in many cases.

In the following, we choose L = 0.in order to conserve the mirror symmetry about
x=0.

Example 1. Consider first the case f5 5 0 with the choice

1=VT  J=0 K=K(+&7 ' _(45)
where Kj is a real constant. The VCNLS €quation that corresponds to (4.5) is

2Ko(1 —i fp)

G RO+ ) Ko=)

e+ (11 fo) e+ (Fr +1 Goye BRIy gy 2y {

% Ko(l + 72)

+ 142

+i£2 Toe® Ko(+f7) tan™! r} u=0. (4.6)
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Figure 1. Amplitude |u(x, £3{ of the exact solution of example 1.

As one can see, the choice (4.5) does not introduce a time singularity in the VCNLS
equation (4.6). Although the model (4.6) is rather complex, it has an exact solution that
represents the evolution of a solitary wave into another one. This solution can be obtained
from the application of the allowed transformation (4.4} to the following solitary wave
solution [28] of the CGL equation:

fi = fip [sech (@B)}'~# T @mn
where the four parameters iy, &, B and I' satisfy

—c?(1-p)+2He%8=0
20’8+ fe?(1— D+ 5 =0
2B~ +3a> LB+ 51 ;=0
30’8~ f0*(B -2 + Gaiig =0.

Figure 1 illustrates the behaviour of the solution amplitude |x(x, £}] for the choice

b=

As one can see, the amplitude of the field evolves smoothly between two (different)
solitary waves as the time 7 increases or decreases. This phenomenon is a consequence of
the fact that K’ vanishes as |¢| increases. It is interesting to note that although the signs of
2, and hy in (4.8) represent amplification terms for the CGL equation, the solution of the
transformed model (4.6) exhibits a dissipating behaviour as ¢ increases.

Example 2. A particular case of the CGL equation that is of great physical interest is the
NLS equation {(fz = §2 = Az = h; = 0 and g, = constant). The VCNLS equations that
can be transformed into the NLS equation can all be considered as completely integrable
systems,
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Figure 2. Amplitude {u{x. #)| of the exact solution of example 2 with kg = 1.

For this example, we make the choice

irt=-2 J=0 K+4K2=—[§9- )
which vields the following VCNLS equation:
) . K
ity + tege + §1 Tosech (VKo 1) uinl® + == x>u=0. (4.10)

4

In this case again, no time singularity is introduced by the choice (4.9). As an example of
the exact solution for (4.10), let us normalize §; to 2 and apply the allowed transformation
(4.4) to the following bound two-soliton solution of the NLS equation:

4 cosh(3%) + 12 cosh(E) &8
cosh(4%) + 4 cosh(2x) + 3 cos(87)

i=

e’ . (@4.11)

The amplitude of this solution is symmetric about ¥ = 0 and exhibits a periodic peaking
in f. The allowed transformation tums out to transform the solution (4.11) into a localized
structure in the {x,7}-plane. The amplitude of such a structure is shown in figure 2 for
the choice K¢ = Tp = 1. The nonlinear coefficient in (4.10) is partly responsible for the
localization as it forces the solution (4.11) to vanishes as |¢| increases. The quadratic term
in (4.10) also increases the spreading of the structure because of its positive sign. The two
humps in figure 2 are the only peaks of solution (4.11) which do not completely disappear
for the above choice of parameters Kp and Tp.

With the choice Kp = —1, the quadratic term in (4.10) with Ty = —Kp = 1 represents
a typical quantum harmonic oscillator potential. However, this choice introduces a singular
periodic function ‘sec(f)’ as nonlinear coefficient. Figure 3 shows the amplitude of an exact
time-periodic solution of (4.10) with Ty = —Kp = 1, which is obtained by applying the
allowed transformation (4.4) to the fundamental soliton solution of the NLS equation. The
amplitude has a time-periodic singularity on the x = 0 axis.
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Figure 3. Amplitude |u(x. 1)| of the exact solution of example 2 with Kg = —1.

5. Summary and conclustons

The results of this study can be summed up as follows.

(1) Allowed transformations, transforming VCNLS equations of the form (1.1) amongst each
other, have the form given in (2.2)—-(2.4). If the function f(x,t) is normalized to
satisfy f| = 1, then this normalization is preserved by the allowed transformations of
(2.6)-(2.11).

{2) The Lie point symmetry group & of the VCNLS equation has dimension 1 < dim G < 5.
The dimension 5 is achieved if and only if the equation is equivalent to one with
f=1 g=¢€+ig o =0( = =xl, go = constant}. The corresponding symmetry
algebra is given in (3.30b). :

(3) Every VCNLS equation with dimG = 4, 3,2 can be transformed by an aliowed trans-
formation into a representative equation listed in theorems 4, 3, and 2, respectively.
The VCNLS equation is always invariant under the one-dimensional {constant) gauge
transformations generated by W of (3.13).

(4} It was illustrated in section 4 that VCNLS equations with coefficients depending on
x and ¢ in a physically interesting manner can be transformed into equations with
constant coefficients. For these many solutions are known and they can, by the inverse

transformation be transformed into X - and ¥ -dependent solutions of the original VCNLS
equation.

Further research on this topic is planned in several directions. The first is to study the
prototype equations with symmetry groups of dimension 4 and to establish whether any of
them are integrable, or in some meaningful sense, ‘partially integrable’ {52]. The second
is to reconsider the derivation of the VONLS equation in various branches of physics and to
analyse the meaning of the individual functions that figure in the equation. The results of
this paper can then be used to obtain solutions for physically interesting models. Finaily,
we plan a systematic study of solutions of VCNLS equations satisfying dimG = 5. We
mention that while allowed transformations take solutions of the NLS equation into those of
the VCNLS equation, they do not preserve boundary conditions, asymptotic behaviour, etc.
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Hence a direct study of Lax pairs, Backlund transformations and other properties of the
maximally symmetric VCNLS equations would be of considerable interest.

Acknowledgmenis

This work was supported in part by the Natural Scieaces and Engineering Research Council
of Canada and by the Fonds FCAR of Québec. '

References

(1
[2]

(3]
[4]
15]
[63
7
L]

[9
[10]
(113
{121
{13]
{14]
[i5]
{16]
£17]
[18]
[19]
[20]
f21]

[22]

(23]
[24]
(23]
[26]
(27]

-{28]
£28]
130}
(31
(32
[33]
(34]
[33]
[3¢]
[371]
[38]
{39]
{401

Wintemnitz P and Gazeau J P 1992 Phys. Lerz. 167A 246

Gazeau P P and Winternitz P 1992 Symmetries of variable coefficient Koneweg—de Vries equations J. Math.
Phys. 33 4087

Yajima N and Oikawa M 1975 Prog. Theor. Phys. 54 1376

Hasegawa A and Tappert F 1973 Appl. Phys, Lett. 23 171

Zakharov V E 1968 Sov, Phys. J. Appl. Mech. Tech. Phys. 4 190

Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: STAM)

Faddeev L D and Taktajan L A 1987 Hamiltonian Methods in the Theory of Solitons (Berlin: Springer)

Ablowitz M J and Clarkson P 1991 Salitans, Non-linear Evoiution Equations and Inverse Scattering
{Cambridge: Cambridge University Press)

Stewartson K and Stuart J T 1971 J. Fluid Mech. 48 529

Kogelman $ and DiPrima R C 1970 Phys. Fluids 13 1

Newell A C and Whitehead J A 1969 J, Fluid Mech. 38 279

Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York Spnnger}

Martinez O E, Fork R L and Gordon J P 1985.J. Opi. Soc. Am. B 2753

Diels J C, Dietel W, Fontaine J J, Rudolph W and Wilhelmi B 1985 J. Opt. Soc. Am. B 2 650

Haus H A and Silberberg Y 1986 [EEE /. QGuantum Electron. QE-22 325

Doering C R, Elgin J N, Gibbon J D and Holm D D 1988 Phys. Letr. 129A 310

Bélanger P A, Gagnon L and Paré C 1989 Opr. Lett. 14 943

Pavlik M and Rowlands G 1975 J. Phys. C: Solid State Phys. 8 1189

Paré C, Gagnon L and Bélanger P A 1989 Opt. Commun. 74 228

Blow K J, Doran N J and Wood D 1988 J. Opt. Sec. Am. B § 381

Ainslie B I, Blow K J, Gouveia-Neto A S, Wigley P G J, Sombra A 5 B and Taylor J R 1990 Electron.
Leit. 26 186

Khrushchev I Y, Grudinin A B, Dianov E M, Korobkin D V, Semenov V A and Prokhorov A M 1590
Electron. Lett. 26 456

Nakazawa M, Kurckawa K, Kubota H, Suzuki K and Kimura Y 1990 Appl Phys. Lett. 57 653

Gagnon L and Bélanger P A 1991 Phys. Rev. A 43 6187

Agrawal G P 1991 Phys. Rev. A 44 7493

Gagnon L. J. Opt. Soc. Am. B to appear

Hirota R 1980 Sclitons Topics in Current Physics vol 17, ed R K-Bullough and P J Caudrey (New York:
Springer)

Nozaki K and Bekki N 1984 J. Phys. Soc. Jpn 53 1581

Landman M J 1987 Stud. App!l. Math. 76 187

Lange C G and Newell A C 1974 SIAM J. Appl. Math. 27 441

Moon H T, Huerre P and Redekopp L G 1982 Phys. Rev. Lett. 49 458

Keefe L R 1985 Snud. Appl. Math. 13 91

Bernoff A J 1988 Physica 30D 363

Sirovich L 1989 Physica 37D 126

Sirovich L, Rodriguez J D and Knight B 1990 Physica 43D 63

Rodriguez 1 D, and Sirovich L 1990 Physica 43D 77

Deelman A 1991 Nonlinearity 4 231

Holmes P 1986 Physica 23D 84

Sirovich L and Newton P K 1986 Physica 21D 115

Doelman A 1989 Physica 49D 156



7076

(44
[42]
[43]
[(44]
{43]
[46]
47]

[48]
[49]
{50]
f51]
(52]

£53]
54

L Gagron and P Winternitz

Profilo G and Soliani G 1991 Nuovo Cimento B 106 307

David D, Levi D and Winternitz P 1987 Stud. Appl. Math. 76 133; 1989 Stud. Appl. Math. 80 1

Zheng Yu-kun and Chan W L 1989 J. Phys. A: Math. Gen. 22 441

Clarkson P A and Cosgrove C M 1987 J. Phys. A: Math. Gen. 20 2003

Clarkson P A 1992 Nonlinearity 54 53~

Florjariczyk M and Gagnon L 1990 Phys. Rev. A 41 4478; 1992 Phys. Rev. A 45 6881

Gagnon L and Winternitz P 1988 J. Phys. A: Math. Gen. 21 1493; 1985 J, Phys. A: Math. Gen. 22 469,
1989 Phys. Lent. A 134 276; 1989 Phys. Rev. A 39 296; 1990 Phys. Rev. A 42 5029

Gagnon L., Grammaticos B, Ramani A and Winternitz P 1989 1. Phys. A: Math. Gen. 22 499

Martina L, Soliani G and Winternitz P 1992 J. Phys. A: Math. Gen. 25 4425

van Saarlos W and Hohenberg P C 1952 Physica 56D 303

Olver J 1986 Appiications of Lie Groups to Differential Equations (Berlin: Springer)}

Winternitz P 1990 Partially Integrable Evolution Equations in Physics ed R Conte and N Boccara (Dordrecht;
Kluwer) pp 51567

Bérubé D and de Montigny M 1992 Preprint CRM-1822

Champagne B, Hereman W and Wintemitz P 1991 Comput. Phys. Commun. 66 319



