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1. Phys. A Math. Gen. 26 (1993) 7061-7076. Printed in the UK 

Symmetry classes of variable coefficient nonlinear 
Schrodinger equations 

L Gagnon and P Wtntemitz 
Cenve de recherches mathematiques, Uninersit6 de Monu6al. CP 6128-A, Mon!dal Quebec 
H3C 3J7, Canada 

Received 14 June 1993 

Abstract. A variable-coefficient nonlinear SchrCdinger (vnrrs) equation, involving three 
arbitrary complex functions of space-time (in 1 + 1 dimensions) is analysed from the point of 
view of its symmetries. All equations of the type studied having non-trivial Lie point symmetry 
p u p s  C are identified. The symmetry group is shown to be at most fivedimensional and 
only when the equation is equivalent to the NU equation ilself or to a mther special complex 
Ginzburg-Landau equation. Lie point transformations are used to obtain solutions of specific 
VCNLS equations lhat should be of interest in nonlinear optics or other branches OF physics. 

1. Introduction 

The present article is devoted to a study of variable-coefficient nonlinear SchrWinger 
(VCNLS) equations 

iul + f(x, t )  U,, +g(x. t )  U IuI2+ h(x, t )  U = 0 

f = f 1 + i f 2  ~ g = g l + i g Z  ~ h = h l + ~ i h z  (1.1) 

f i , g j , h j E R  j = 1 . 2  f i # O  gl#O.  

We shall classify such equations into equivalence classes under the transformations 

I # O .  
au arjai a r j a t  

aijax ai ja t  
- #.O a; 

(1.2) 

Each equivalence class will be characterized c by its Lie point symmetry group G. We 
shall see that the symmetry group is at most five-dimensional. The existence of non-hivial 
symmetry groups of course imposes strong restrictions on the complex functions fi, gj and 
hj in (1.1). The symmetries will then be used to,obtain physicaily interesting solutions with 
a quite non-trivial space-time dependence. 

We shall call transformations of the form (1.2). leaving the form of the VCNLS equation 
invariant, but possibly changing the functions f, g and h into different ones (‘allowed 
transformations’). The classification method used here has recently been applied to the 
study of the variable-coefficient Korteweg-de Vries equation in a similar manner [I, 21. 

The motivation for the present study lies in the physical importance of  the VCNLS 
equation. Equation (1.1) is a natural extension of two fundamental equations. One is the 
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nonlinear SchrGdinger (NU) equation itself, obtained from (l.l), for ft  = 1, gl = -+I and 
fz = gz = hl = hz = 0. The complex function u(x, t )  has different physical meanings in 
different branches of physics. It may be an electromagnetic potential and the NLS equation 
then describes, for instance, the evolution of nonlinear Langmuir waves in a plasma [3]. In 
other applications, u(x. I) may be a wave amplitude, and the N U  equation describes weakly 
nonlinear, weakly dispersive waves in fibre optics 141 or deep water 153. Independent of its 
physical interest, the NLS equation is a prototype soliton equation, having all the attributes 
of an infinitedimensional completely integrable Hamiltonian system [6-81. Large families 
of solutions of the NLS equation are obtained by essentially linear techniques (the inverse 
scattering transform and its generalizations). Such solutions include solitons, multisolitons, 
breathers and quasiperiodic solutions. 

Equation (1.1) also generalizes another fundamental equation, the complex Ginzburg- 
Landau (CGL) equation, obtained when f, g and h are constant (the real Ginzburg-Landau 
equation is obtained when they are purely imaginary). In this case u ( x , f )  can be a 
complex order parameter, describing various physical phenomena close to critical stability. 
In hydrodynamics, for instance, it results from an expansion in some parameter (e.g. the 
Reynolds, Rayleigh or Taylor number) near the critical value of that parameter. For example, 
it is the generic amplitude equation that governs the initial stages of phase transition in 
plane Poiseuille flow [9] (fluid flowing between two parallel plates), Taylor-Couette flow 
[IO] (fluid flowing between two rotating cylinders) as well as Rayleigh-Btnard convection 
[Ill (fluid with a vertical temperature gradient). Similarly to fluid systems, the CGL 
equation is also found to govern the appearance of chemical turbulence in reaction-diffusion 
systems [12]. 

In addition to critical phenomena, the CGL equation also has numerous applications in the 
modelling of the electric field amplitude in nonlinear optics. For instance, it describes, under 
appropriate conditions, the dynamics of light in laser cavities 113-171 and semiconductors 
[IS]. Recently, it has also been used to model the dynamics of a spatial solitary wave in 
a saturated amplifyinglabsorbing medium 1191 and the dynamics of pulse propagation in 
nonlinear rare-earth doped optical fibres for which material dispersion, gain dispersion and 
nonlinearity all contribute significantly 120-261. 

Because of its wide range of applications, properties of the CGZ equation are continuously 
the subject of studies both in physical and mathematical contexts. Among the properties 
already known, let us mention the following ones. The Hirota method 1271 has been used 
to rewrite the COL equation in a bilinear form in order to obtain exact solutions describing 
solitary waves and shock fronts [?A]. Numerical integrations of the CGL equation were 
also performed and led to the determination of coherent structures with complex field 
profiles [29]. A stability criterion was obtained which determines whether the system 
underlying the CGL equation does or does not evolve into a monochromatic state 1301. 
In relation to this criterion, the bifurcation structure and asymptotic dynamics of unstable 
periodic modulations of a uniform wavetrain were also studied [31-371. In particular, 
asymptotic states such as limit cycles, 2torus and chaotic attractors were shown to exist. 
Many investigations of periodic solutions have been performed [38-40]. Finally, as far as 
we know, only one study was concerned with the question of symmetry properties of the 
CGL equation 1411. 

Allowing the parameters f, g and h to be complex functions of the independent variables 
x and f may correspond to new or more realistic physical conditions. In hydrodynamics, 
for instance, variable depth, and the presence of vorticity or viscosity are a few examples 
of physical effects that introduce such variable coefficients in the KdV equation 1421. In 
nonlinear optics, non-homogeneous dielectric media usually lead to variable coefficients 
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in the NLS or COL equation. Propagation-coordinatedependent amplification or transverse- 
coordinate-dependent diffraction and nonlinearity may also be modelled in this way. 

The generalization of the NLS to the VCNLS equation usually destroys some or all of 
the integrability properties of the original equation. There exist, however, particular cases 
when this is not so [43]. 

Finally, we mention that other generalizations of the NLS equation have been studied 
in the literature. Usually they involve constant coefficients, but generalize the type of 
nonlinearity 144-501. 

The aim of the present study is two-fold. First, in sections 2 and 3, we will classify 
the VCNLS equations of the form (1.1) according to the dimension and type of their point- 
symmetry groups, i.e. the set of Lie point transformations of type (1.2) that preserve the form 
of the equation and transform solutions amongst each other. The classification method is 
based on the usual infinitesimal techniques for finding point symmetry p u p s  of differential 
equations [50,51] and will be described in section 3. The representative equation in each 
class will be determined by an extensive use of the concept of ‘allowed transformations’, 
which will be presented in section.2. These transformations are those that relate equations 
of the form (1.1) to other equations of the same form, but possibly with different arbitrary 
functions f ,  g and h. Lie point symmetry transfomiations are particular cases of allowed 
transformations when the form of the functions f, g and h is preserved. Two equations 
related by an allowed transformation will be considered to belong to the same equivalence 
class. As a result, the symmetry group of the vCNLS equation will be shown to be at 
most five-dimensional, which occurs only if the function f can be transformed into a real 
constant, g to a complex constant and h to 0. 

Second, in section 4. we will concentrate on the analysis of a physically important 
subset of allowed transformations. i.e. those that relate the VCNLS equation to the CGL and 
NLs equations. In particular, our analysis will permit the identification of the form of the 
VCNLS equation that possesses the same symmetry and integrability properties as the NLS 
equation. 

2. Allowed transformations 

2.1. General form of the transformations 

Let us now determine the Lie point transformations that leave the VCNLS equation (1.1) 
form invariant. Such transformations, by definition, do not add any terms to the considered 
equation, but may change the functions that are already there. We restrict ourselves to 
fibre-preserving transformations, i.e. we assume.that they have the form of (1.2). In other 
words, the new independent variables ? and 2 do not depend on U. 

We calculate ut and uxz and substitute into (1.1). Requiring that the equation for E(?, T)  
be linear in iii; and iij and that no terms of the type iij: occur, we find 

uct=o r ,=o.  (2.1) 

Requiring that the nonlinearity be cubic (no quadratic terms in U present), and that terms 
proportional to I& cancel, as well as terms not involving the dependent function at all, we 
obtain the allowed transformations 

U(x,f) = Q ( x , t ) i i ( i , f )  , ? = X ( x , t )  i = T ( t ) .  (2.2) 
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We can view T ( f )  and X ( x ,  f) as arbitrary real sufficiently smooth functions. The function 
Q ( x ,  t )  is complex and must satisfy 
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i Qx, + f ( x .  0 (X, Q +2Q, XJ = 0 .  (2.3) 
The transformed functions in the VCNLS equation are 

where x and t must be expressed~ in terms of i and T from (2.2) (the dot stands for a time 
derivative). 

22. Simplification of the equation and restrictions on allowed transformations 
Since we shall always assume fi(x,t) # 0 in some open interval of W we can set 

(2.5) 

x: =&ti. f;'. This amounts to putting 

f ( x .  t )  = 1 + i f d x ,  t )  f 2  E W 
in (1.1). 

In order to keep this normalization intact, we must limit the allowed transformations to 

u(x, t )  = Q ( x ,  t )  XI?, T) 

Q E C  T , . $ E R  T > O  

i Q [ ( q ' x  + g] + 2(1 +i f z )  Q, fi = 0 .  

i = T ( t )  .? = f i x  + c ( t )  
(2.6) 

with 

(2.7) 
We introduce the moduli and phases of U and Q, putting 

U(& t )  = p(x ,  t )  e"k.1' Q(x, t )  = R ( x ,  t )  e*(xd) 
12.8) 

,020 R ' > O  O < W ' < 2 r r  o < $ J c 2 r r .  
Equation (2.7) then implies 

These a1,lowed transEormations change the functions f (x.  f ) ,  g ( x ,  t) and h(x, t) in the 
VCNLS equation as foIlows: 

R ( x ,  t)' ~cz,T> 1 + i  f i ( x . 1 )  E(:, ?) = g(x ,  t)-  
T( t )  

(2.11~) 
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2.3. Transformations of vectorfields 

We shall see in section 3 that the Lie algebra of the symmetry group of (1.1) is realized by 
differential operators of the form 

x =r(t)a,  + [ ~ ~ x + ( ~ ( t ) ] a , + ~ ( x , t ) p a , + ~ ( x , t ) a ,  (212) 

where the real functions r(t) ,  ( ~ ( t ) ,  A(x, t )  and D(x,  t )  are subject to furlher detemining 
equations. Under the allowed transformations (2.6) the vector field X transforms into a 
vector field of the same form. If we have r ( f )  f 0 in (2.13, we can put = it-' and e = -  (Y d- Tr-l toobtain 

xl = a, + A(X,  t )  P a,, + D(X,  t )  a, (2.13) 

(A and D are not the same as in (2.12)). 

with 
 substitution^ 

Moreover the form of XI in (213) is not changed by allowed transformations (2.6) 
= 1, 6 = 0 arid R = R(I), 4 = @(i). Such transformations will amount to the 

A(x, t )  -+ A(x, t )  - - R( t )  D(x,  t )  -+ D ( x ,  f) - d(I) (214) R 

in (2.13). 
For t = 0, a # 0 in (2.12), we can transform the vector field into 

xz = a, + ACX, t )  pa,, + D(X,  t )  a,. (2.15) 

Further allowed transformations with f = 1 change the functions A and D in (2.15) into 

3. The symmetry group 

3.1. The determining equations 

The Lie algebra L of the symmetry group of (1.1) will be realized by vector fields 

x = qI a, + qt a, + 41 a, + a, (3.1) 

where 71, qi, $1 and 4 are functions of x ,  I, p and w (p and w are the modulus and phase 
of the function U). The algorithm for determining these functions is described, for example, 
in [51,52]. we U s e  a MATHEMATICA version [53] Of the MACSYMA program 1541 which 
calculates the second prolongation, pr"' X, applies it to (1.1) (written as a system of two 
real equations), and imposes that the result should vanish on the solution set of (1.1). This 
provides a set of 68 determining equations, i.e. linear partial differential equations for the 
functions q1, 72. 41 and 4. The code solves the simplest amongst them, uses the result to 
simplify the remaining ones and then prints out a system of 21 remaining equations. 
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Part of the determining equations can be solved independently of the functions f ,  g and 
h in (1.1). The result is that qj ,  q ~ ,  4, and & satisfy 

V I = V I ( X , ~  1 ) 2 = ~ 2 ( C  @ i = A ( x , t ) p  h = D ( x , t )  (3.2) 

where V I ,  I J Z ,  A and D are subject to eight remaining determining equations, involving the 
functions figuring in (1.1). 

Before spelling out these equations we recall that f j ( x ,  t )  satisfies f l  # 0. We then 
use the allowed transformations to normalize fi(x,t) = 1, as in (2.5). The remaining 
determining equations reduce to 

qz = r( t )  qi = ; + ( t ) x  +a([) (3.3) 

1 
(f f X + ff) Ox =~2(1  + f;) 

= 2(1 + f ; )  
f z  ( i f X + & )  

(3.4a) 

(3.4b) 

(3.5) 

(3.6) 

7 gz.i+ [f + X  + a] g ~ , ~  + ( 2 A  + i)gz = 0 

r hi,,  + [i f x +a] 

t h 2 , 1 +  [ ~ T x  +a] hz., + t h z +  At + D,, + f z A x x  = 0 .  

(3.7) 

(3.8) 

(3.9) 

+ i hl - D, + A, - fz D,, = 0 

In the following analysis we always assume 

g l ( X , f ) $ O  (3.10) 

i.e. the original nonlinear term in the NLS equation is present. Throughout we shall make 
use of the allowed transformations to simplify vector fields and the determining equations. 
The justification for this is that we are classifying equations of the form (1.1) according 
to their symmetries. The resulting VCNLS equations will represent conjugacy classes with 
respect to allowed transformations. 

We note that the results of (3.1) and (3.3) are summed up in (2.12). 

3.2. One- and two-dimensional symmetry algebras 

As noted above, an element X of the symmetry algebra L will have the form (2.12). Using 
allowed transformations we can further simplify the considered element X. Three cases 
occur. 

( I )  r(t)  = 0, a(t)  = 0 
From (3.6)  we^ obtain A = 0 (since we have gl # 0) and (3.4a) and (3.8) imply 
D = constant. The result is that precisely one symmetly operator of this type exists, 
independently of the form of the functions f, g and h in (Ll), namely W = 8,. Its 
meaning is obvious: we can always add a constant to the phase w of any solution u ( x ,  t ) .  
Moreover, this is the only pure gauge transformation allowed. 
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~ ( 2 )  T O )  # 0 
We use an allowed transformation to transform X into XI of (2.13). i.e. set T(t)  =. 1, 
f f ( t )  = 0. From (3.4) we obtain Dr = 0, A, = 0 and we use the transformation of (2.14) 
to set A( f )  = 0, D ( t )  =~O. Equations (3.5H3.9) then imply f ~ . ~  = g,., = gz,, = hl,I = 
hzr  = 0. 

(3) s ( t )  = 0, @ ( t )  # 0 
We transform the vector field X into XZ of (2.15), i.e. a(f) = 1. From the determining 
equations we obtain that X must have the form 

x = a, - ; q ( t )  P ap + r ( t )  a, 
and that the functions in (1.1) satisfy 

(3.11) 

f = 1 + i fdt) 

g = [yl ( t )  + i yz(t)] eq"" 

h = [ i ( t ) x + p l ( t ) ] + i [ ~ 4 ( f ) x + p z ( t ) ] .  

(3.12) 

For f i  # 0 we use the allowed transformations to set q( t )  -+ 0, p I ( t )  -+ 0 and p z ( t )  + 0. 
For f2 = 0 we can transfomir(t) + 0, p l ( t )  -+ 0 and p z ( t )  -+ 0, but q(r) is an invariant. 

The results obtained so far can be summed up as follows. 

Theorem 1. The VCNLS equation (1.1) is invariant under gauge transformations 6 = @+WO, 

generated by 

a Sl.1 : w = - aw (3.13) 

for any choice of the complex functions f, g and h. The group of pure gauge transformations 
[Ii 

Theorem 2. The VCNLS equation (1.1) has a two-dimensional symmetry algebra if and only 
if the functions f, g and h and the symmetry algebra can be transformed into one of the 
following cases: 

(leaving x and t invariant) is not larger for any choice of f, g. h. 

Sz.z : x = a, + r ( t )  a, 
f =  I+ i fz ( t )  g=g i ( t )+ ig&)  h = i ( f ) x .  

w = a, 
(3.15) 

For f z ( t )  = 0 we have r(t) = 0. 

All functions in (3.14H3.16) are real. 0 

We note that all three two-dimensional symmetry algebra SZJ, S2.z and Sz,3 are Abelian. 



7068 L Gagnon and P Winter& 

3.3. Three-dimensional symmetry algebras 

A real Lie algebra L of dimension dim L = 3 can be either simple, or solvable. The simple 
Lie algebras sl(2, R) and 4 2 )  cannot be realized in terms of vector fields of the form 
(2.12). Hence, any algebra we obtain must be solvable. All solvable Lie algebras with 
dim L = 3 have two-dimensional Abelian ideals. We choose a basis (XI, Xz, X3) with XI 
and XZ in the ideal and write the commutation relations as 

(3.17) 

where a, b, c, d E R. 
With no loss of generality we assume that the ideal ( X I ,  X2) is in its standard form, 

i.e. Sz.1. Sz.2 or s2.3. We always choose XI = W and hence have a = b = 0 in (3.17). For 
d # 0 we can set, by a change of basis, d = 1, c = 0. For d = 0, we have either c = 0 
or c = 1. In other words the algebras we obtain can be Abelian (a = b = c = d = 0), 
nilpotent (a = b = d = 0, c = I), or solvable and decomposable (a = b = c = 0, d = 1). 
The Abelian ideai is unique only in the solvable non-nilpotent case. 

(1) kkal Sz.1 
We have XI = W ,  XZ = PO and take X 3  as in (2.12). The functions f,, g and h are as 
in (3.14). We first impose that [XI, Xz. X3J forms a Lie algebra, then solve the determining 
equations (3.4w3.9) for X3. 

We obtain four distinct cases, after simplifying by allowed transformations. They are: 

s ~ , ~  : p0 = a, 

s,, : p0 = at 

s3.3 : Po = a, 

p1 = a, 

x = a, + 4 p ap 

x =~a, +a pa, + t a, 

w = a, 
f = l + i f Z  g = ~ + i y  h = i h z  

w = a, 
f = 1  g = ( E  + i y )  e-x h = i h z  

w = a, 
f = l + i f z  g=(E+iy)e-2nr h = x + i b  

1 P + 2  s3.5 : p0 = a, 

f = 1 + if2 

D = t a, + -xa, - -pa, 

g = (E+iy)xp 

w = a, 
1 

xz  ' 

2 4 

h = (hl Cihz) - 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

The quantities f2, y ,  hl, hz, a and p are arbitrary real constants and E = &I.  The 
algebras &,I and s3.2 are Abelian, S3.3 is nilpotent, S3.5 is solvable and decomposable. For 
the algebra s3.2 we have fz = 0; for f2 # 0, s3.2 would be equivalent to s3.1. 

We take the ideal as in (3.15) and add an element X3 of the form given in (2.12). We 
take f, g, and h as in (3.15) and solve the determining equations required for X3 to be 
a symmetry operator. We find that in order for (XI, X2, X 3 }  to form a Lie algebra, we 
must have r = rlt + ro with rl and TO constant. The case r1 # 0 leads to a new class of 
symmetry algebras. The case ZI = 0. 10 # O~gives an algebra already in the list (&,I or 

(2) Ideal s2.2 
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S3.3). The case 51 = 0, ro = 0 gives a new class of subalgebras. We represent the two 
new algebras by 

~ 3 . ~  : pI = a, ~ 
B = I a, + ; x a, w = a, 

f = ~ 1  g = ~ g I ( t ) + i g z ( t ) ~  h = O .  
(3.22) 

The function g l ( t )  and gz(t) are arbitrary. The operator B generates Galilei transformations 

2a s3.6 : x = a, - - a, D = t a, + $.ax - $pa ,  w = a, Ji 
. .  x i b  

f = l + i f Z  g = E + i g X ~  h = a - - -  

where f2. g2, a, b are constants, E = k l .  

(3) Ideal s2.3 
This ideal provides one more class of Lie algebras, represented & follows: 

t312 t 

s3., : x =a, ---pap 1 4  D = ta, + ;X a, - ,pap I w = a, 
2 J i  

(3.23) 

(3.24) 
g = ( E  + i y2) eqxlfi h = -- qx + a  

4t312 t 
f = 1  

where M. q>  and a are constants, e = &l. 
We again sum up the results as a theorem. 

Theorem 3. Seven classes  of^ VCCGL equations with three-dimensional symmetry groups 
exist. The coefficients in the equations and the Lie algebras themselves are presented in 
(3.18X3.24). The Lie algebras S3.l and S3.2 are Abelian, S3.3 and S3.4 are nilpotent, 
non-Abelian and S3.5, S3.6 and S3.7 are solvable and decomposable. 

3.4. Four-dimensional symmetry algebras 

(I) Non-solvable Lie algebras 
For dim L = 4 we can have a symmetry algebra of the form d(2, R) @ A l .  By allowed 
transformations we can take the symmetry algebra and coefficients in the equation to 

2 s4,, : P,, = a, D = 2t a, + x a, - ;pa, c ~ =  I a, + x t  a, - f tp a, + 4 x 2  a, 
(3.25) 1 1 w = a ,  f = i  g = ( E +  i y )  - h = (hl f i h z )  - 

X X 2  

where y. hl and hz are constants, E = f l .  

(2) Nilpotent Lie algebras 
A nilpotent symmetry algebra will have a three-dimensional Abelian ideal. It can be 
vansformed to the form 

s4.* : P,, = a, p , = a ,  ~ = t a , + ; x a ,  w = a, 
(3.261 
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where E = 24 ,  gz, and hz are constants, hz # 0. 
(3) Solvable non-nilpotent Lie algebras 
We shall just present the results here. To obtain them we lirst take the nilradical (maximal 
nilpotent ideal) into its standard form. This is either Abelian as in S3.1 or S3.2. or nilpotent, 
as in S3.3 or S3.4. The algebra is then extended by adding a further element. This in 
tum imposes restrictions on the coefficients in the equation. The following inequivalent 
symmetry algebras are obtained 

L Gagnon and P Winternitz 

s,,~ : P,, = a, p1 = a, w = a, D = t a, + ;X a, - +pa,  
(3.27) 

f = l + i f Z  g = c + i g Z  h = O  

where E = &l, fz and gz are constants, f2 # 0. The algebra is decomposable as 

s4,3 = I D ,  p0, P ~ }  @ w s4,4 : p1 = a, B = r a, + 4 x a, w = a, 
hz g = E + i y  h = i -  1 1 D = t a, + ? X  a, - 5 p  a,, f = 1 f 

where E = &l,  y and hZ # 0 are constants, and 

s4.5 : P~ = a, B = t a, + x a, w = a, 

(3.28) 

(3.29) c = ( t 2 +  i)a, + t x  a, - p a p  + $.?a, 
i & + t  

f = 1  g = c + i y  h =  
202 + 1) 

where E = f l ,  y ,  hz are constants. 

D acts on PI  and B like a Lorentz transformation, C like a rotation. 
The algebras S4.4 and S4.5 are indecomposable. They are not mutually isomorphic, since 

We can now sum up the results as a theorem. 

Theorem 4 .  Five conjugacy classes of v c "  equations with four-dimensional symmetry 
groups exist. The coefficients in the equation and the corresponding symmetry algebras are 
summed up in (3.25H3.29). The algebra S4.1 has the structure of gl(2, a), s4.2 is nilpotent, 
S4.3 is solvable and decomposable, S4.4 and S4.5 are solvable and indecomposable. 

3.5. Five-dimensional symmetry algebras 

The result in this case is very simple and we shall just present it without proof. 

Theorem 5. Any VCNLS equation with a fivedimensional symmetry group can be 
transformed into the VCNLS equation satisfying 

f = 1  g = e + i g z  h = O .  (3.30~) 

The symmetry algebra is solvable and has the form 
P,, = a, PI =a, w = a ,  ~ = t a , + ; ~ a ,  ~ = t a , + ~ ~ a , - ; p a , ,  I 

(3.30b) 

which is isomorphic to the onedimensional extended Galilei similitude algebra [47]. 
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4. Solutions of VCNLS equations 

As we have seen above, the concept of allowed transformations was very useful in the 
classification process leading to the representative equations given in section 3. In a 
complementary approach, allowed transformations can be used to obtain solutions of rather 
general VCNIS equations in terms of solutions of a simpler representative equation that 
exhibits the same symmetry properties. In the present section, we briefly consider such 
solutions for VCNLS equations with f z  = constant, related by allowed transformations to the 
complex Ginzburg-Landau equation, i.e. (1.1) with f ,  g and h constant. 

By reformulating the results of section 2, one can show that the most general VCNLS 
equations that can be transformed into one of the representative equations of section 3, with 
f 2  =constant, are those for~which f2  = & and 

= (2, + iHz) F I-Ze-2filKX2+LX) (4.1) 
hi = tk+4(1 +Xi) K 2 ] x Z  + [ L  +4(1+ f z )  K L ]  x + j + (1 + f z )  L2 +XiF 
hz 

(4.2) 

-fXk + 4(1 + f:) Kz l  X* - f z [ L  + 4(1 + f:) K L I x  

-iF -2(1+f,Z)K-f2(1+fZ2)L2+X2i. (4.3) 

where -stands for the coefficients of the chosen representative equation and I, J ,  K, L and 
T are functions o f t  alone. 

The transformation itself turns out to be 

t =  T with F = ~ ~ ~ - 8 ( l + f ? ) I K a  (4.4Q) 

i = J ? x + c  with & = - 2 ( l + f ; ) J j ; L  (4.4b) 

(4.4c) = ii(i, i )  I efdKx2+Lx) ei(KxZ+Lx+J) 

where TO is a positive constant. It is important to note that the transformation (4.4) involves 
four arbitrary functions o f f ,  namely I, J ,  K and L. This provides enough freedom to build 
up VCNLS equations that may correspond to a particular physical situation. 

It is not our present intention to analyse the effect of the transformation (4.4) on all the 
representative equations with f z  = constant, since exact solutions are difficult to obtain for 
most of them. We shall keep to a few illustrative exainples for the physically important 
CGL equation for which many exact solutions are known. For f z  # 0, the functions K and 
L are fixed by the coefficients of x z  and x in g respectively. For f z  = 0, they are fixed 
by the coefficients of xz and x in hl .  Fixing the coefficient of x2 in hl leads to a Riccati 
equation for K that can be solved exactly in many cases. 

In the following, we choose L = O~in order to conserve the mirror symmetry about 
x = o .  

Example 1. Consider first the case f z  # 0 with the choice 

I = &  J = O ”  K = KO(] + P - 1  (4.5) 

where KO is a real constant. The VCNLS equation that corresponds to (4.5) is 
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lul 10 

Figure 1. Amplitude lu(x.r) l  of the exact solutionof example 1. 

As one can see, the choice (4.5) does not introduce a time singularity in the VCNLS 
equation (4.6). Although the model (4.6) is rather complex, it has an exact solution that 
represents the evolution of a solitary wave into another one. This solution can be obtained 
f" the application of the allowed transformation (4.4) to the following solitary wave 
solution [28] of the CGL equation: 

ir = CO [se& (af)]'-'fi e' (4.7) 

where the four parameters Zo, a, ,8 and r satisfy 

2 r - (1 - p2) + ~ f ~ ~ ~ f i  = o 
2 a2B + fz a2( 1 - 82) + g2 = 0 

a2(fi2 - 2) + 3 a 2 f z f i  +& Zi = 0 

3a2fi - f2 a2(P2 - 2) + & = 0. 

Figure 1 illustrates the behaviour of the solution amplitude lu(x, t)l for the choice 

KO =0.1 , To = 1 .  (4.8) 

As one can see, the amplitude of the field evolves smoothly between two (different) 
solitary waves as the time I increases or decreases. This phenomenon is a consequence of 
the fact that K vanishes as It1 increases. It is interesting to note that although the signs of 
f;, and & in (4.8) represent amplification terms for the CGL equation, the solution of the 
transformed model (4.6) exhibits a dissipating behaviour as f increases. 

Example 2. A particular case of the CGL equation Gat is o f  great physical interest is the 
NLS equation (A = gz = i 2  = i, = 0 and = constant). The VCNLS equations that 
can be transformed into the NLS equation can all be considered as completely integrable 
systems. 

A = - ?  I & = 2  &2=0 
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4 
Fwre 2. Amplitude lu(x. r)i of the exact solution of example 2 with Kg = 1. 

For this example, we make the choice 

j I - l = - 2  J = O  K + 4 K 2 = -  KO ~, . (4.9) 
4 

which yields the following V C N ~  equation: 

(4. IO) 

In this case again, no time singularity is introduced by the choice (4.9). As an example of 
the exact solution for (4.10). let us normalize 21 to 2 and apply the allowed transformation 
(4.4) to the following bound two-soliton solution of the NLS equation: 

- 4 cosh(32) + 12 cosh@ j e*; , eii, 
U =  

cosh(4f) + 4cosh(22) + 3 cos(8;) 
(4.1 1) 

The amplitude of this solution is symmetric about 2 = 0 and exhibits a periodic peaking 
in F. The allowed transformation tums out to transform the solution (4.11) into a localized 
structure in the (x,t]-plane. The amplitude of such a structure is shown in figure 2 for 
the choice ‘KO = TO = 1. The nonlinear coefficient in (4.10) is partly responsible for the 
localization as it forces the solution (4.11) to vanishes as It1 increases. The quadratic term 
in (4.10) also increases the spreading of the structure because of its positive sign. The two 
humps in figure 2 are the only peaks of solution (4.1 1) which do not completely disappear 
for the above choice of para meters^ KO and TO. 

With the choice KO = -1, the quadratic term in (4.10) with TO = -KO = 1 represents 
a typical quantum harmonic oscillator potential. However, this choice introduces a singular 
periodic function ‘sec(t)’ as nonlinear coefficient. Figure 3 shows the amplitude of an exact 
time-periodic solution of (4.10) with TO = -KO = 1, which is obtained by applying the 
allowed transformation (4.4) to the fundamental soliton solution of the NLS equation. The 
amplitude has a time-periodic singularity on the x = 0 axis. 
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2 
Figure 3. Amplitude lu(x. 111 of the emct solution of example 2 with KO = -1. 

5. Summary and conclusions 

The results of this study can be summed up as follows. 

(1) Allowed transformations, transforming VCNLS equations of the form (1.1) amongst each 
other, have the form given in (2.2)-(2.4). If the function f ( x , t )  is normalized to 
satisfy fi = 1, then this normalization is preserved by the allowed transformations of 
(2.6)-(2.11). 

(2) The Lie point symmetry group G of the VCNLS equation has dimension 1 c dim G < 5. 
The dimension 5 is achieved if and only if the equation is equivalent to one with 
f = 1, g = E + i gz, h = 0 ( E  = f l ,  g2 = constant). The corresponding symmetry 
algebra is given in (3.306). 

(3) Every VCNLS equation with dimG = 4 , 3 , 2  can be transformed by an allowed trans- 
formation into a representative equation listed in theorems 4, 3, and 2, respectively. 
The VCNLS equation is always invariant under the onedimensional (constant) gauge 
transformations generated by W of (3.13). 

(4) It was illustrated in section 4 that VCNLS equations with coefficients depending on 
x and t in a physically interesting manner can be transformed into equations with 
constant coefficients. For these many solutions are known and they can, by the inverse 
transformation be transformed into X- and Y-dependent solutions of the original VCNLS 
equation. 

Further research on this topic is planned in several directions. The first is to study the 
prototype equations with symmetry groups of dimension 4 and to establish whether any of 
them are integrable, or in some meaningful sense, ‘partially integrable’ 1521. The second 
is to reconsider the derivation of the VCNLS equation in various branches of physics and to 
analyse the meaning of the individual functions that figure in the equation. The results of 
this paper can then be used to obtain solutions for physically interesting models. Finally, 
we plan a systematic study of solutions of vCNLS equations satisfying dimC = 5. We 
mention that while allowed transformations take solutions of the NU equation into those of 
the VCNLS equation, they do not preserve boundary conditions, asymptotic behaviour, etc. 
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Hence a direct study of Lax pairs, Backlund transformations and other properties of the 
maximally symmetric VCNLS equations would be of considerable interest 
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